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Abstract Background:
Several intercellular signalling pathways (including wingless (Wnt), hedgehog (Hh), and bone
morphogenetic protein (BMP)) are used repeatedly in animals throughout development and evolution
and are also frequent targets for disease-associated disruptions. We have previously shown that the
major transcriptional effectors of β-catenin-dependent Wnt signalling, the TCF/LEF proteins, in contrast
to other pathway components, have a higher gene number and isoform diversity in vertebrates versus
invertebrates, but this increased diversity has only been poorly quantified. Considering that isoform
diversity correlates with organism complexity, any increase in major signalling effectors is likely to have
made a significant contribution to vertebrate evolution.
Results:
Using de novo long-read transcriptomes, we compared isoform number per gene for the chordates Ciona
intestinalis, Lampetra planeri and Xenopus tropicalis, thus encompassing the invertebrate sister group to
vertebrates, as well as a cyclostome and a gnathostome vertebrate. We find a significant increase in the
number of transcript isoforms per gene expressed during embryo development and organogenesis at the
invertebrate-to-vertebrate transition, specifically for the main transcription factor effectors of the Wnt/β-
catenin, Hh and BMP pathways, i.e. TCF/LEF, GLI and SMAD.
Conclusions:
Our results implicate an increase in isoform diversity of the transcription factors of major intercellular
signalling pathways as having a disproportionate role in the evolutionary origin and diversification of
vertebrates.
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Long‑read sequencing reveals increased 
isoform diversity in key transcription 
factor effectors of intercellular signalling 
at the invertebrate‑vertebrate transition
Nuria P. Torres‑Aguila1,2, Marika Salonna3,4, Sebastian M. Shimeld5, Stefan Hoppler3 and David E. K. Ferrier1* 

Abstract 

Background  Several intercellular signalling pathways (including wingless (Wnt), hedgehog (Hh), and bone mor-
phogenetic protein (BMP)) are used repeatedly in animals throughout development and evolution and are also fre-
quent targets for disease-associated disruptions. We have previously shown that the major transcriptional effectors 
of β-catenin-dependent Wnt signalling, the TCF/LEF proteins, in contrast to other pathway components, have a higher 
gene number and isoform diversity in vertebrates versus invertebrates, but this increased diversity has only been 
poorly quantified. Considering that isoform diversity correlates with organism complexity, any increase in major sig-
nalling effectors is likely to have made a significant contribution to vertebrate evolution.

Results  Using de novo long-read transcriptomes, we compared isoform number per gene for the chordates Ciona 
intestinalis, Lampetra planeri and Xenopus tropicalis, thus encompassing the invertebrate sister group to vertebrates, 
as well as a cyclostome and a gnathostome vertebrate. We find a significant increase in the number of transcript iso-
forms per gene expressed during embryo development and organogenesis at the invertebrate-to-vertebrate transi-
tion, specifically for the main transcription factor effectors of the Wnt/β-catenin, Hh and BMP pathways, i.e. TCF/LEF, 
GLI and SMAD.

Conclusions  Our results implicate an increase in isoform diversity of the transcription factors of major intercellular 
signalling pathways as having a disproportionate role in the evolutionary origin and diversification of vertebrates.

Keywords  TCF, SMADs, GLIs, Ciona, Lamprey, Lampetra planeri, Xenopus tropicalis, Splicing

Background
The driving forces for the evolution of organism com-
plexity has been a topic of discussion for decades [1–4]. 
Despite genome duplications being renowned for the 
creation of new paralogous gene copies and their sub-
sequent evolution via processes like sub- and neofunc-
tionalisation [5], and specialisation [6], the G-value 
paradox showed that the number of genes in a genome 
do not necessarily correlate with organism complexity 
[2]. One of the proposed alternatives to solve this para-
dox is the expansion of the organism proteome through 
alternative splicing, correlating with phenotypic novelty 
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[3]. Previous studies found a strong correlation between 
number of cell types (as a proxy for organism complex-
ity) and alternative splicing [4, 7], providing evidence of 
the importance of isoform diversity for organism evolu-
tion. However, whether particular types of genes contrib-
ute disproportionately to this phenomenon has not been 
assessed.

Wnt signalling is a cell-to-cell signalling mechanism 
highly conserved in the animal kingdom and required 
during development and regeneration [8]. The best 
described Wnt pathway is the canonical Wnt (cWnt) 
pathway, also known as the Wnt/β-catenin pathway, 
which involves the nuclear translocation of β-catenin, 
triggered by extracellular Wnt ligand-receptor interac-
tions. Nuclear β-catenin functions as a co-regulator for 
activation of Wnt-target genes, usually via binding the 
T-cell factor/lymphoid enhancer factor (TCF/LEF) pro-
teins. The cWnt pathway has a variety of roles in animal 
homeostasis and development, including involvement in 
development of the anterior–posterior and dorsal–ven-
tral axes [8, 9]. It is also associated with many human 
diseases such as cancers [10], diabetes [11] and men-
tal disorders [12]. Comparably widespread functions 
in development, homeostasis and disease are also seen 
in other major signalling systems such as the hedgehog 
(Hh) and bone morphogenetic protein (BMP) pathways, 
whose main transcription factors are the Glioma-Asso-
ciated Oncogene (GLI) proteins and the small/Mothers 
Against DPP Homolog (SMAD) proteins, respectively 
[13–15].

Genome comparisons between vertebrates and inver-
tebrates reveal a remarkable conservation of the cWnt 
pathway with relatively little expansion of most of its 
components [16]. Nonetheless, vertebrate TCF/LEF tran-
scription factors, the main transcription factor of the 
cWnt pathway, show a much greater diversity [17–20]. 
Multiple copies of TCF/LEF genes have been retained 
from genome duplications in vertebrates, which typically 
possess four TCF/LEF family genes with multiple iso-
forms, while invertebrates typically have one TCF gene 
with a single isoform [20, 21]. A similar gene expansion 
might have occurred for SMAD and GLI families of tran-
scription factors mediating BMP/TGFβ and Hh signal-
ling, respectively.

Given these general observations, we aimed to assess 
transcript isoform diversity of developmentally expressed 
genes across components of these signalling pathways 
(cWnt–TCF/LEF, BMP–SMAD, Hh–GLI) and compare 
them to other categories of genes. We hypothesised that 
such major developmental control genes may have been a 
particular target for the evolutionary diversification that 
occurred with the origin of the vertebrates. We selected 
three species representing key lineages of the Olfactores 

chordates; the invertebrate urochordate Ciona intes-
tinalis, the cyclostome (jawless vertebrate) Lampetra 
planeri, and a gnathostome (jawed vertebrate) Xenopus 
tropicalis, to analyse in an unbiased way the number of 
genes and transcripts expressed during embryogenesis 
and assess if TCF/LEF, SMAD and GLI genes are dis-
tinctive in their transcript isoform diversity. Our use of 
de novo long-read sequencing data was focused specifi-
cally on selected developmental stages of the three cho-
sen species to help overcome the difficulty in accurately 
and reliably determining splice isoforms from short-read 
sequencing data. Also, our approach allows us to deter-
mine which genes and isoforms are specifically deployed 
during development to improve the comparability of our 
data between species.

Results
Transcriptome analysis
To analyse the diversity of isoforms of developmentally 
transcribed genes within chordates, we performed cDNA 
long-read sequencing of developmental stages of C. intes-
tinalis, L. planeri and X. tropicalis (see Table 1) and pro-
cessed the data following the pipeline shown in Fig.  1. 
All selected stages performed similarly in the sequenc-
ing protocol (Table 1) producing de novo transcriptomes 
with loci coverage over 40% (Fig. 2A) and capturing over 
60% of metazoan-conserved orthologues (BUSCOs) 
(Fig. 2D). Notably, the transcriptomes included over 10% 
of novel loci, with gene models not currently annotated 
in the respective reference genomes (Fig.  2B), although 
the highest proportion of transcripts were ones that 
fully matched reference models (categories ‘ = ’, ‘c’ and ‘k’ 
of Fig. 2C). Regarding the novel loci, the majority of the 
identified genes had no GO term associated with them 
(1110 out of 1359 for C. intestinalis, 3184 out of 3337 for 
L. planeri, and 2898 out of 3316 for X. tropicalis) (see the 
‘Methods’ for GO analysis details). This suggests these 
novel loci that lack associated GO terms may be taxon-
specific or rapidly evolving genes. After performing a GO 
enrichment analysis on the loci that did have associated 
GO terms, no GO terms were enriched for C. intestinalis 
or L. planeri. However, for X. tropicalis we found 209 GO 
terms significantly enriched (Additional File 1: Table S1), 
most of them linked to muscle- and heart-related func-
tions, including muscle contraction, structural assembly, 
and development.

The transcript:gene ratio (t/g ratio) was calculated 
for the total number of expressed genes and transcripts 
obtained for each transcriptome, as well as for subsets 
of particular gene categories (Table  2). We observed a 
higher number of different transcripts per expressed gene 
in the vertebrates relative to the invertebrate Ciona only 
for TCF/LEF genes (TCFs), SMADs and GLIs (Fig. 3A). 
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Comparisons of the variance of t/g ratio observed on 
each subset showed that TCFs had a greater variance 
than most of the other subsets studied (p-value < 0.1, 
Additional File 1: Tables S2–5), including the subset ‘Wnt 
signalling pathway’ (GO:0016055) and the SOX genes, 

which belong to the same HMG-box superfamily as the 
TCF/LEFs. Moreover, a similar pattern was found for 
SMAD and GLI genes. However, after multiple-test cor-
rection, none of these comparisons remained significant 
(Additional File 1: Table  S2). To further assess whether 
the increase in transcripts observed for these gene fami-
lies was different from that observed for the other catego-
ries, we performed linear regressions for each subset and 
calculated the regression coefficient (β1 or slope, Fig. 3B, 
Additional File 1: Tables S6–8), excluding the t/g ratio of 
the target gene families from the t/g ratio calculations on 
the other categories (i.e. All, Over1, Emb. Dev., Wnt path., 
BMP path., Hh path., and TF, Additional File 1: Table S2). 
A linear regression model including all individual subsets 
revealed that the interaction term of GLIs (cell_type_
num:SubsetGLIs) and TCFs (cell_type_num:SubsetTCFs) 
showed significance (p-value < 0.01 and p-value < 0.1, 
respectively, Additional File 1: Table S6), indicating that 
the regression coefficient observed for those subsets dif-
fered from the reference subset (All).

Next, we performed separate linear regression models 
for each gene family (TCFs, SMADs, GLIs and SOXs), 
grouping the remaining subset to increase statistical 
power. We excluded the Over1 subset, as its high mean 
increased the regression error, and the pathways sub-
sets not related with the specific gene family, except for 
SOXs (i.e. TCFs groups: TCFs and All + Emb.Dev. + Wnt 
path. + TF + SOXs; SMADs groups: SMADs and 
All + Emb.Dev. + BMP path. + TF + SOXs; GLIs groups: 
GLIs and All + Emb.Dev. + Hh path. + TF + SOXs; SOXs 
groups: SOXs and All + Emb.Dev. + Wnt path. + BMP 
path. + Hh path. + TF). The interaction terms showed 

Table 1  Long-read sequencing reads. Reads obtained after long-read sequencing and after data processing for each sample used. Ci: 
Ciona intestinalis; Lp: Lampetra planeri; Xt: Xenopus tropicalis; St: developmental stage

Stage Dev process Input reads Clean reads Min. length Avg. length Max. length Sum. length

Ci_St04 Cleavage 1,466,765 574,175 200 512 4385 293,959,329

Xt_St06 Cleavage 1,615,386 1,374,219 200 897.8 5474 1,233,804,871

Ci_St12 Gastrulation 2,807,191 2,156,039 200 891.2 7527 1,921,535,475

Xt_St10 Gastrulation 2,876,070 2,277,830 200 626.7 3851 1,427,433,920

Ci_St15 Neurulation 860,144 610,643 200 515.4 3441 314,711,689

Ci_St16 Neurulation 1,378,599 839,501 200 668.8 3560 561,488,108

Xt_St16 Neurulation 1,436,005 1,258,985 200 803.8 4049 1,011,971,517

Xt_St20 Neurulation 2,435,888 2,048,749 200 704.8 4483 1,443,978,930

Lp_St22 Post-neurulation 985,970 730,948 200 680.3 5565 497,288,356

Ci_St21 Cell Diff 3,526,232 2,724,082 200 647.3 3230 1,763,334,732

Ci_St26 Cell Diff 2,601,133 1,913,539 200 566.5 4336 1,083,927,850

Lp_St25 Organogenesis 7,505,549 4,919,531 200 536.8 4812 2,640,918,572

Lp_St28 Organogenesis 5,515,552 3,719,539 200 534.1 5,287 1,986,704,869

Xt_St28 Organogenesis 1,871,477 1,424,131 200 555.6 4628 791,301,969

Xt_St35 Organogenesis 2,506,733 1,541,432 200 440.9 2996 679,623,175

Fig. 1  Pipeline for long-read data processing. Round boxes: files; 
square boxes: software programmes. Blue boxes: obtained files; 
yellow boxes: reference files; green box: final transcriptome file; 
light-grey boxes: software for processing data; dark-grey boxes: 
software for evaluate quality of obtained transcriptome file
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that TCFs, SMADs, and GLIs had a significantly differ-
ent regression coefficient compared to the grouped sub-
sets (TCFs p < 0.01; SMADs p < 0.1; GLIs p < 0.001, see 
Additional File 1: Table  S7) whereas SOXs showed no 

significance (p-value > 0.1; Additional File 1: Table  S7). 
This reaffirmed the previously observed pattern for GLIs 
and TCFs and extended it to SMADs.

Fig. 2  Transcriptome quality assessments. A Covered (blue) and missed (grey) exons/intron/loci for each species data set. B Novel exon (blue), 
intron (yellow), and loci (green) for each species data set. C Pie plots showing the distribution of transcript-matching types according to gffcompare 
categories: = (light-blue), identical reference-query match; c (orange), complete query match within reference; k (grey), complete reference match 
within query; j (yellow), some splice site mismatch (potential new isoform); o (dark-blue), partial overlapping match; u (green), no match of query 
within reference (novel); Other (brown), other types of query-reference matches including m (all introns retained), n (some introns retained), e 
(single exon match), s (intron match on opposite strand), x (exon match on opposite strand), i (contained within reference intron), y (reference 
contained within intron), p (possible polymerase run-on), and r (repeat). D Histogram showing the amount of evolutionary conserved orthologues 
(BUSCOs) found, as single-copy (light blue), duplicated (dark blue) or fragmented (grey), and missing (yellow)
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Finally, we performed a linear regression model group-
ing TCFs, SMADs, and GLIs together as target group, 
and the remaining subsets (i.e. All, Emb. Dev., Wnt path., 
BMP path., Hh path., TF and SOXs) as comparison 
group. The regression coefficient observed for the target 
group was significantly higher than the one observed for 
the comparison group (Fig. 3B, Shapiro–Wilk test p-val-
ues > 0.5; Bartlett test p-value < 0.001; Mann–Whitney U 
test: p-value < 0.05, Additional File 1: Table S8).

All together, these results indicate that these key devel-
opmental transcription factors (TCF/LEFs, SMADs, 
and GLIs) have a distinctive pattern of a higher number 
of different transcripts per expressed gene in the verte-
brates relative to the invertebrate Ciona: in our analy-
sis (summarised in Table 2), TCF/LEFs have 1 gene and 
1 transcript in C. intestinalis compared to 1 gene and 2 
transcripts in L. planeri and 4 genes and 9 transcripts in 
X. tropicalis; SMADs have 5 genes and 6 transcripts in 
C. intestinalis compared to 3 genes and 4 transcripts in 
L. planeri and 7 genes and 12 transcripts in X. tropicalis; 
and GLIs have 1 gene and 1 transcript in C. intestinalis 
compared to 1 gene and 1 transcript in L. planeri and 
1 gene and 3 transcripts in X. tropicalis (DNA and Pro-
tein sequences available in Additional Data 1–6). Inter-
estingly, the variance observed in the t/g ratio for these 
three gene families (TCF/LEFs, SMADs, and GLIs) was 
not significantly different between each of them (padj = 1, 
Additional File 1: Table  S2), indicating that they show 
similar distributions of transcript isoforms per expressed 
gene within the three chordate groups. Alongside the lin-
ear regression modelling that demonstrates a significant 
increase in t/g ratios of the developmentally expressed 

genes in the TCF/LEF, GLI and SMAD families in the 
two vertebrates relative to the invertebrate Ciona, this 
demonstrates a distinct characteristic of these families 
relative to other genes found in our transcriptome data.

A new splice isoform in Ciona intestinalis
To confirm the transcript sequence and structure of the 
C. intestinalis TCF/LEF (in what was formerly known as 
Ciona intestinalis Type B) relative to the commonly stud-
ied sister species Ciona robusta (formerly Ciona intes-
tinalis type A), we performed RACE-PCR in different 
stages of development, selected according to the previ-
ously described expression of C. intestinalis TCF (CiTCF) 
[22]. 5′RACE-PCR was performed in St04 (8-cell; mater-
nal mRNA) and St12 (mid-Gastrula; zygotic mRNA), and 
3′RACE-PCR was performed for St04, St12, St16 (late 
Neurula), and St21 (mid-Tailbud I).

For 5′RACE-PCR, only one fragment was amplified, 
matching the described gene model. For 3′RACE-PCR 
two different 3′ ends were found. The first was found 
in all the assessed stages and matched the previously 
described gene model. The second, smaller in size, was 
found in St16 and matched the described gene model 
but with a different final exon. Further analysis of the 
genomic region between exon 12 and exon 13 in C. 
intestinalis (intron 12; Fig. 4A) showed the presence of 
this new exon flanked by two transposable elements, 
partially overlapping one at the 3′ end. These trans-
posable elements matched in sequence the previously 
described miniature inverted-repeat transposable ele-
ments (MITE) Cimi-1 [23]. Comparison of intron 12 
between C. robusta and C. intestinalis revealed that 

Table 2  Total number of genes and transcripts for each transcriptome and subsets. All: the whole transcriptome; Over 1: only genes 
with more than one transcript; Emb. Dev.: genes with the GO term ‘Embryo Development’ (GO:0009790); Wnt Path.: genes with the GO 
term ‘Wnt Pathway’ (GO:0016055); BMP Path.: genes with the GO term ‘BMP signalling pathway’ (GO:0008101 or GO:0030509); Hh Path.: 
genes with the GO term ‘smoothened signalling pathway’ (GO:0007224); TF: genes with the GO term ‘DNA-binding transcription factor 
activity’ (GO:0003700); SOXs: SOX genes; TCFs: TCF and TCF/LEF genes; SMADs: SMAD genes; GLIs: GLI genes

Ciona intestinalis Lampetra planeri Xenopus tropicalis

Genes Transcripts Ratio t/g Genes Transcripts Ratio t/g Genes Transcripts Ratio t/g

All 12,717 20,183 1.59 14,311 17,988 1.26 20,775 30,429 1.46

Over 1 3868 11,171 2.89 2235 5860 2.62 5431 15,105 2.78

Emb. Dev 15 22 1.47 14 19 1.36 69 106 1.54

Wnt Path 40 58 1.45 29 33 1.14 89 134 1.51

BMP Path 54 86 1.59 37 45 1.22 63 94 1.49

Hh Path 49 90 1.84 43 55 1.28 49 82 1.67

TF 296 481 1.63 130 167 1.28 750 1235 1.65

SOXs 5 7 1.40 3 5 1.67 9 14 1.56

TCFs 1 1 1.00 1 2 2.00 4 9 2.25

SMADs 5 6 1.20 3 4 1.33 7 12 1.71

GLIs 1 1 1.00 1 1 1.00 1 3 3.00
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Fig. 3  Transcript:gene ratio. A Histogram of the transcript:gene ratios (t/g ratio) for each species (blue: Ciona intestinalis; grey: Lampetra planeri; 
yellow: Xenopus tropicalis) and category (All: whole transcriptome; Over 1: genes with more than one transcript; Emb. Dev: genes with the GO term 
‘Embryo Development’ (GO:0009790); Wnt path.: genes with the GO term ‘Wnt signalling pathway’ (GO:0016055); BMP path.: genes with the GO 
term ‘BMP signalling pathway’ (GO:0008101 or GO:0030509); Hh path.: genes with the GO term ‘smoothened signalling pathway’ (GO:0007224); 
SOXs: SOX genes; TF: genes with the GO term ‘DNA-binding transcription factor activity’ (GO:0003700); TCFs: TCF and TCF/LEF genes; SMADs: 
SMAD genes; GLIs: GLI genes). B Linear regressions of each subset studied (dotted lines) and for the two groups used for the Mann–Whitney U 
test (solid lines): ‘Other categories’, encompassing All, Emb. Dev., Wnt path., BMP path., Hh path., TF and SOXs (grey line), and ‘TCFs + SMADs + GLIs’, 
encompassing those three gene families (green line). The t/g ratio is plotted against the cell type number in development for each species, 
according to Cao et al.46 for Ciona, Pang et al.47 for lamprey, and Liao et al.48 for Xenopus. Dots: Transcript:Gene ratio values. Dot outline: belonging 
to group, ‘TCFs + SMADs + GLIs’ (green) or ‘Other categories’ (grey). β1: regression coefficient



UNCORRECTED PROOF

Journal : BMCTwo 12915 Dispatch : 19-1-2026 Pages : 13

Article No : 2522 ¨  LE ¨  TYPESET

MS Code : ﻿ þ   CP þ   DISK

Page 7 of 13Torres‑Aguila et al. BMC Biology _#####################_	

despite the Cimi-1 insertions being conserved, this was 
not the case for the splice acceptor site nor the stop 
codon of exon 12.5 (Fig. 4B), indicating that this newly 
discovered exon may be specific to C. intestinalis. To 
confirm this alternative C-terminus, we designed a 
specific Reverse primer for exon 12.5 and performed 
RT-PCRs on St12, St15 (mid-Neurula) and St21. This 
isoform was found only in post-gastrulation stages. C. 
intestinalis thus produces two isoforms of TCF/LEF, in 
contrast to the single isoform produced by this gene in 
C. robusta.

Discussion
Our transcriptome analyses focused on gene expression 
during embryo development and organogenesis revealed 
that TCF/LEF, SMAD and GLI genes exhibit a distinc-
tive pattern of higher numbers of splice isoforms per 
developmentally expressed gene in vertebrates than the 
representative from the closest invertebrate sister group, 
represented here by the urochordate C. intestinalis. This 
larger number of splice isoforms occurs in addition to the 
increase in paralogue numbers in these transcription fac-
tors at the origin of vertebrates.

Fig. 4  Schematic of CiTCF intron 12. A Schematic of the C. intestinalis genomic region where exon 12.5 is found. B DNA alignment of TCF intron 
12 of C. intestinalis and C. robusta. C. intestinalis (R): sequence from Roscoff reference genome (GCA_018327825.1); C. intestinalis (P): sequence 
from Plymouth reference genome (GCA_018327805.1); dark blue: annotated exons; light blue: new exon (exon 12.5); yellow: Cimi-1-like sequences; 
red boxes: acceptor site and stop codon of exon 12.5
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Our previous in silico analyses identified an increase 
in TCF/LEF gene number encoded in the genome at 
the invertebrate-to-vertebrate transition, likely via the 
whole genome duplications that occurred early in ver-
tebrate evolution, and in addition suggested there was 
an increase in isoform diversity in this gene family [21]. 
However, this diversity remained to be quantified. It also 
remained to be determined as to when these isoforms are 
expressed during development and hence are presum-
ably functional. This analysis is provided here. Another 
important question was whether the evolutionary pat-
terns seen in this major transcriptional effector of the 
cWnt signalling pathway were unique, or also occurred 
elsewhere, especially in other major developmental sig-
nalling pathways like Hh and BMP/TGFβ.

Invertebrates typically have four SMADs, correspond-
ing to a single-copy of each SMAD subgrouping (com-
mon SMAD (Co-SMAD), inhibitory SMAD (I-SMAD), 
BMP-regulated receptor SMAD (R-SMAD) and TGFβ-
regulated R-SMAD). However, Ciona has independently 
duplicated the TGFβ-regulated R-SMAD [24], giving a 
total of five SMADs in this tunicate. Meanwhile verte-
brates usually possess eight different SMADs (one Co-
SMAD, two I-SMADs, three BMP-regulated R-SMADs, 
and 2 TGFβ-regulated R-SMADs) [25, 26]. In the GLI 
family, invertebrates have a single GLI gene while ver-
tebrates typically have three paralogues [27]. Thus, 
the SMAD and GLI families show a similar pattern of 
increased paralogue numbers encoded by the genome to 
that seen in the TCF/LEF family. However, the amount 
of developmentally expressed splice isoform diversity 
remained to be analysed for both SMAD and GLI fami-
lies. Our data demonstrate that these families, when ana-
lysed by linear regression modelling against numbers of 
cell types in these chordates, show a similar pattern to 
the TCF/LEF family, with a significantly higher number 
of isoforms per developmentally expressed gene in the 
vertebrates we studied relative to the invertebrate sister 
group.

It is striking that this invertebrate-to-vertebrate pat-
tern for the TCF/LEF, SMAD and GLI genes is signifi-
cantly different from other developmentally expressed 
genes and their transcripts found in our new transcrip-
tomes (‘All’ category in Fig. 3). This is also the case when 
we focus on genes that demonstrably exhibit alternative 
splicing (that is, have more than one transcript per gene: 
the ‘Over 1’ category in Fig.  3), in which the C. intesti-
nalis ratio is indistinguishable from those of the two ver-
tebrates. Thus, there is not simply a general increase in 
isoform diversity in developmentally expressed genes at 
the invertebrate-to-vertebrate transition. Since these first 
two categories encompass genes that span a variety of 
biological functions, we also focused on genes thought 

to be more specifically involved in embryo development, 
in case there is a general increase in complexity of devel-
opmental control genes associated with the invertebrate-
to-vertebrate transition and the evolution of vertebrate 
complexity. No distinct pattern was observed between 
the invertebrate C. intestinalis and the vertebrates. This 
lack of invertebrate to vertebrate distinction was also 
observed when the focus was even more specific, onto 
Wnt pathways as a whole (Fig.  3). Another alternative 
possibility was explored by comparison to Transcrip-
tion Factors in general (‘TF’ in Fig. 3) in case the media-
tors of transcriptional control are the focus of change 
between invertebrates and vertebrates. No significant 
distinction was found. As a final test of how distinct the 
pattern found for the TCF/LEF family was, we analysed 
the SOX genes, since these are in the same superfamily 
as the TCF/LEF genes and hence act as the closest com-
parison possible. The invertebrate-to-vertebrate pattern 
for the TCF/LEF genes is significantly different to that of 
the SOX genes. Thus, the TCF/LEF genes stand-out from 
all of these different categories of genes, implying a spe-
cific expansion in the splice isoform diversity focused on 
these transcription factor mediators of the cWnt path-
way. Notably, the only categories of genes that we found 
with comparable invertebrate-to-vertebrate patterns 
were those of the transcription factor mediators of other 
major intercellular signalling pathways (the SMAD and 
GLI genes).

Amongst all of this vertebrate genetic diversity, it has 
been shown that vertebrate TCF/LEF paralogues and 
GLI paralogues have some degree of redundancy at 
the functional level [17, 28]. Nevertheless, there is also 
evidence that different TCF/LEF isoforms can target 
different genes [29], showing both sub- and neo-func-
tionalisation. Similarly, GLI isoforms have been shown 
to have opposing roles activating or repressing the gene 
expression of their specific target genes [28]. Therefore, 
the diversity of vertebrate genes in TCF/LEF, SMAD and 
GLI families, and the isoforms produced from them, pre-
sumably reflects a wide array of functional capabilities 
downstream of important developmental signalling path-
ways in vertebrates.

These three gene families are the main transcription 
factor effectors of major intercellular signalling path-
ways (cWnt, BMP/TGFβ and Hh, respectively), which 
are integral to embryo development, organogenesis and 
homeostasis. Their major roles in development in con-
junction with the correlation of isoform diversity with 
organism complexity [1–4] is consistent with the hypoth-
esis that increased diversity of these transcription fac-
tors may be making a disproportionate contribution to 
the evolution of vertebrate complexity relative to inver-
tebrates. Interestingly, previous studies had observed 

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375



UNCORRECTED PROOF

Journal : BMCTwo 12915 Dispatch : 19-1-2026 Pages : 13

Article No : 2522 ¨  LE ¨  TYPESET

MS Code : ﻿ þ   CP þ   DISK

Page 9 of 13Torres‑Aguila et al. BMC Biology _#####################_	

genes resulting from duplication usually retain lower 
numbers of isoforms, with duplication and isoform diver-
sity being inversely correlated evolutionary patterns 
[30, 31]. This makes the pattern observed here in these 
developmental signalling transcription factor effectors 
even more striking, as our data shows that TCF/LEF, 
SMAD and GLI genes are exceptions to this inverse cor-
relation. This could be an indicator of a significant role 
for isoform diversity of these key transcription factors in 
the evolutionary origins and diversification of vertebrate 
complexity.

One caveat to this hypothesis is whether the species 
selected here are good representatives of the inverte-
brate-to-vertebrate transition. C. intestinalis, for exam-
ple, was selected because it is a urochordate and as such 
is a member of the closest invertebrate clade to the ver-
tebrates, and is also accessible and amenable to gene 
expression and developmental experimentation. There 
are, however, aspects of its genome organisation and 
content that are relatively derived within the chordates 
[32]. Also, it is known that amphioxus exhibits alterna-
tive splicing from its Gli gene, producing two distinct 
isoforms [33], rather than the single isoform of Ciona 
GLI that was found here. It is also notable that our analy-
ses are focused on the transcripts found within our new 
transcriptome data. While this enhances comparability 
between the different species, we are not necessarily cap-
turing all isoforms produced by each of the three species 
selected. Rare transcripts expressed at very low levels in 
embryogenesis, or transcripts expressed only in adult 
stages, will not be present in our data. These are areas for 
future further work, to quantify the patterns described 
here with even greater precision. Nevertheless, there is 
no indication that the three transcription factor families 
focused on here are unusual in Ciona relative to inverte-
brates in general in any major way, but this is also an area 
for further scrutiny in the future, particularly as addi-
tional high-quality genome assemblies and more long-
read transcriptome data becomes available.

In addition to these ‘signalling transcription factor’ 
findings, the long-read transcriptomes provided in this 
work are also a valuable resource for deeper understand-
ing of gene expression during embryo development of 
different chordates, including species not previously 
assessed with long-read transcriptome sequencing, such 
as Cyclostomata and Urochordata. However, despite all 
the samples being processed in the same way and our 
obtaining similar quality values within urochordate and 
gnathostome data sets, the quality of the cyclostome data 
set was not as good (Fig. 2). This issue could be due to the 
GC-richness of cyclostome genomes [34] and/or the fact 
that L. planeri (the species sampled) and P. marinus (the 
species used as the lamprey reference genome) are more 

evolutionarily distant and distinct than the species used 
for urochordates (samples of C. intestinalis and reference 
genome of C. robusta) and gnathostomes (samples and 
reference genome of X. tropicalis).

It is also notable that for C. intestinalis, the transcript 
type category that had the highest number of transcripts 
was ‘j’ (40%, Fig.  2C), showing that most of the tran-
scripts had mismatched splicing sites (junctions) against 
reference annotations. This could be an indicator of 
potential novel isoforms found in this new C. intestinalis 
transcriptome data for previously annotated genes in C. 
robusta. In fact, our finding of an alternative transcript of 
CiTCF is the first evidence that C. intestinalis has more 
than one TCF isoform. However, this second transcript 
of CiTCF was only found by RACE-PCR rather than 
being in the transcriptome data, which may reflect the 
RACE-PCR having higher sensitivity than cDNA long-
molecule sequencing, since the PCR is gene-specific. In 
addition, the partial overlap of exon 12.5 with the Cimi-1 
MITE sequence provides an example of how transposable 
elements can alter intronic sequences that then provide 
material for the evolutionary origin of novel exons, in 
this case in concert with point mutations that generated a 
new splice acceptor site as well as a new stop codon.

Conclusions
We have created de novo transcriptomes of embryo 
development for three different chordates: C. intesti-
nalis (Urochordata), L. planeri (Cyclostomata) and X. 
tropicalis (Gnathostomata). Our analyses demonstrate 
distinctive increases in isoform diversity at the inverte-
brate-to-vertebrate transition specifically among tran-
scription factor effectors of key intercellular signalling 
pathways that drive cell type diversity. This distinctive 
change focused on these specific gene families (TCF/
LEF, SMAD and GLI) goes beyond the previous observa-
tions of a general correlation between increased isoform 
diversity and evolution of animal complexity. This dem-
onstrates likely disproportionate roles for these specific 
transcription factor families in the evolution of verte-
brate complexity, which needs to be explored with future 
functional assays of these various isoforms.

Methods
Material fixation and RNA extraction
After in vitro fertilisation, selected embryological stages 
from C. intestinalis, L. planeri and X. tropicalis were fixed 
in RNAlater™ (Invitrogen, AM7021) for a minimum of 
16 h at 4  °C, taking care that the amount of RNAlater™ 
was at least 10 times the volume of the sample. Stage 
numbering was done according to Hotta [35], Tahara 
[36] and Zahn [37]. RNA extractions were performed 
with ‘RNAeasy mini kit’ (QIAGEN, 74,104) following the 
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manufacturer’s protocol. The quality and quantity of the 
total RNA obtained was tested by gel electrophoresis and 
Nanodrop spectrophotometer.

cDNA long‑read sequencing
For each sample analysed, 50  ng of total RNA was pro-
cessed using the PCR-cDNA Barcoding Kit (Oxford 
Nanopore Technologies (ONT), SQK-PCB109). The first 
strand synthesis was performed following the manufac-
turer’s instructions (Thermo Scientific Maxima H Minus 
First Strand cDNA Synthesis Kit with dsDNase, K1681). 
First, a previous DNAse treatment of the total RNA was 
performed as follows: incubation of 10 min at 37 °C fol-
lowed by an inactivation of 5 min at 55 °C in the presence 
of 10  mM of DTT. After, the sample was cooled on ice 
and VN Primers and dNTPs where added. After mixing, 
the sample was incubated 5 min at 65 °C and snap cooled 
on a pre-chilled freezer block. Then, 5xRT buffer, Strand-
Switching Primers and Maxima H Minus Enzyme Mix 
were added and the sample was mixed by pipetting. The 
reverse transcription (RT) reaction was performed by 
incubating the sample 10 min at 25 °C followed by 92 min 
at 42 °C and 5 min at 85 °C.

A single PCR reaction was performed for each RT reac-
tion. The PCR reaction was prepared according to the 
PCR-cDNA Barcoding Kit protocol with minor modi-
fications in the cycling conditions: initial denaturation 
at 95  °C for 30  s; 18 cycles of denaturation at 95  °C for 
10  s, annealing at 62  °C for 20  s, extension at 65  °C for 
2 min 30 s; final extension of 65 °C for 10 min and hold 
at 4  °C. Each reaction was treated with Exonuclease I 
(New England Biolabs, M0293) followed by a purification 
with AMPure XP beads (Beckman Coulter, A63880) as 
indicated in the PCR-cDNA Barcoding Kit protocol with 
minor modification (i.e. we used 30 µL of AMPure XP 
beads per PCR reaction). The concentration and quality 
of the obtained samples were assayed by Nanodrop and 
gel electrophoresis. The sequencing was performed with 
a maximum of 100 fmol per run.

MinION flow cells (ONT, FLO-MIN106D) underwent 
flow cell check prior to library construction. The bar-
coded PCR-cDNA libraries were prepared for sequencing 
and the MinION flow cell was primed using the flow cell 
priming kit (ONT, EXP-FLP002) as indicated in the PCR-
cDNA Barcoding Kit protocol. A maximum of six PCR-
cDNA libraries per run were sequenced in parallel on a 
single MinION flow cell with Min-KNOWN software 
v.21.02.2 (ONT). Fast basecalling was performed in real-
time with a maximum data acquisition time of 48 h and 
the following filters applied: minimum Barcode score of 
60 and minimum Qscore of 7. All the raw data produced 
is available at the Sequence Read Archive (SRA) database 

under accession numbers SRR24756885-SRR24756899, 
BioProject PRJNA977127.

Transcriptomic data processing
The cDNA ONT reads were pre-processed with pychop-
per (ONT), to remove the primer sequences intro-
duced by the protocol, and with SeqKit [38], to remove 
sequences under 200  bp length. Each cDNA ONT 
library for each developmental stage sequenced was 
aligned to the corresponding reference genome by mini-
map2 [39] (C. intestinalis reads aligned against Ciona 
robusta genome (GCA_000224145.2 [40]); L. plan-
eri reads aligned against Petromyzon marinus genome 
(GCA_010993605.1 [41]); X. tropicalis reads aligned 
against X. tropicalis genome (GCA_000004195.3 [42])), 
transcripts refined with TranscriptClean [43] and anno-
tated with StringTie2 [44] software. Finally, the stage-spe-
cific annotations were merged into a general annotation 
file for each species with StringTie2 ‘-merge’ option and 
reference transcriptome and proteome dataset were gen-
erated using TransDecoder [45]. The obtained proteome 
datasets and general annotation file were analysed with 
BUSCO [46] (v5.2.2) and gffcompare [47], respectively, to 
assess the quality of the transcriptomes. For obtaining the 
GO annotations, the InterPro Scan option of Blast2GO 
software (v.6.0.3) and the EggNOG-mapper tool [48] 
were run using each transcriptome dataset as input.

Statistical analysis
The GO enrichment analysis was done separately for 
each species. The analysis was performed in R using the 
function ‘enricher()’ from the ‘clusterProfiler’ package 
providing as inputs the list of ‘u’ genes and the GOs and 
genes found in the whole transcriptome.

For each species dataset, the ratio transcript:gene (t/g 
ratio) for developmentally expressed genes was calcu-
lated for all the genes present in the created transcrip-
tome (All), genes that had more than 1 transcript (Over 
1), genes with the gene ontology numbers GO:0009790 
(Embryo Development, Emb. Dev.), GO:0016055 
(Wnt signalling pathway, Wnt path.), GO:0008101 or 
GO:0030509 (BMP signalling pathway, BMP path.), 
GO:0007224 (smoothened signalling pathway, Hh path.) 
and GO:0003700 (DNA-binding transcription fac-
tor activity, TF), and for the gene families SOXs, TCFs, 
SMADs and GLIs. For the target gene families a BLASTN 
against the raw reads data was done to ensure isoform 
detection. We performed F-tests (or Bartlett’s test when 
data not normal by Shapiro Wilk test) to compare the 
variances of t/g ratios within the different subsets (i.e. 
All, Over 1, Emb. Dev., Wnt path., BMP path., Hh path., 
TF, SOXs, TCFs, SMADs and GLIs) doing pairwise com-
parisons and Bonferroni correction for multiple-test 
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comparisons (Additional File 1: Table S2). A difference in 
the variance was expected when the t/g ratio was notice-
ably different within species. The regression coefficient 
(β1) for each subset was estimated using a linear regres-
sion model with t/g ratio values and species complexity 
defined as the number of cell types detected by single-cell 
RNAseq in larva/organogenesis stage (C. intestinalis [49]: 
60; L. planeri [50]: 70; X. tropicalis [51]: 106). Finally, a 
Mann–Whitney U test was applied to evaluate differ-
ences in regression coefficients between groups. In all 
cases, data normality was assessed by Shapiro–Wilk tests 
(see Additional File 1: Tables S2 and S8).

RACE‑PCR, cloning and sequencing
Total RNA of C. intestinalis was used for 3′RACE and 
5′RACE experiments using FirstChoice™ RLM-RACE 
Kit (Invitrogen, AM1700) following the manufacturer’s 
protocol and with the following CiTCF-specific prim-
ers: 5′-CAG​GCA​TGT​TAC​GAT​ACC​CAT​ATC​CA-3′ 
(3′RACE), 5′-CAT​CAC​AAT​TTA​CAT​CCA​CAT​CTG​
GTGGT-3′ (5′RACE), 5′-CTT​CAC​ATA​TGG​CCG​
ACT​TGG​TTT​GTC​ACC​T-3′ (nested 3′RACE) and 
5′-TCG​CGT​TTC​TTT​GAA​CCA​GGT​TCA​G-3′ (nested 
5′RACE). PCRs were performed with Taq DNA poly-
merase (Thermo Scientific, EP0402) following the man-
ufacturer’s protocol and results were assessed by gel 
electrophoresis in 1% agarose gels.

The individual bands obtained after nested RACE-
PCR were purified with the ISOLATE II PCR and Gel Kit 
(Meridian Bioscience, BIO-52059), and cloned with the 
pGEM®-T Easy Vector System (Promega, A1360), follow-
ing the manufacturer’s protocol. Transformation was per-
formed into E. coli competent cells (Agilent, XL10-Gold 
Ultracompetent cells, 200,314) by heat-shock. All clones 
were selected by Ampicillin resistance and their composi-
tion was confirmed by enzyme digestion with NotI (New 
England Biolabs, R0189) and Sanger sequencing (Oxford 
Zoology service, Eurofins service). The sequences were 
compared against C. intestinalis genomic sequences from 
Roscoff reference genome (GCA_018327825.1 [52]) and 
from Plymouth reference genome (GCA_018327805.1 
[53]).

The intronic region within exon 12 and exon 13 of C. 
intestinalis TCF was amplified with the following primer 
pair: 5′-TCG​CAC​GAT​AAT​GTT​AAC​AAGC-3′ (forward 
primer), 5′-GTT​CAT​AGC​TAC​TTG​ATG​GTT​GGA​-3′ 
(reverse primer). Specific exon 12.5 PCRs were done with 
the following primer pair: 5′-ACA​ACA​GCA​ATT​ATG​
GTG​CGCAC-3′ (forward primer), 5′- ATACC​CCG​ACG​
AGG​ACAAC-3′ (reverse primer). The protocols for PCR 
and posterior cloning were as described above.

Abbreviations
BLAST	� Basic Local Alignment Search Tool

BMP	� Bone morphogenetic protein
BUSCO	� Benchmarking Universal Single-Copy Orthologs
cDNA	� Complementary deoxyribonucleic acid
dNTPs	� Deoxynucleotide triphosphates
DTT	� Dithiothreitol
GLI	� Glioma-Associated Oncogene
GO	� Gene Ontology
Hh	� Hedgehog
HMG box	� High Mobility Group box
MITE	� Miniature inverted-repeat transposable elements
RACE PCR	� Rapid Amplification of cDNA Ends Polymerase Chain Reaction
RNA	� Ribonucleic acid
RT PCR	� Reverse transcription polymerase chain reaction
SMAD	� Small/Mothers Against DPP Homolog
SOX	� SRY-related HMG box
TCF/LEF	� T-cell factor/lymphoid enhancer factor
TGFβ	� Transforming growth factor β
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